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Parameter Estimation of a Rotary Inverted Pendulum

Lew WJ & K.V. Ling

School of Electrical Electronics Engineering
Nanyang Technological University

Nanyang Avenue, Singapore 639798

ABSTRACT

A step up and step down test is employed to estimate the parameters of a rotary inverted
pendulum. The data collected are used to fit a nonlinear model of the inverted
pendulum. Two different methods of estimating the parameters of the pendulum are
investigated. In addition, the effects of varying the amplitude of the test signal are
investigated.

INTRODUCTION

The inverted pendulum system is widely used in control study. A rotary arm (Fig 1) version of
the inverted pendulum system is used. The apparatus (Kri PP-300) is supplied by Kent Ridge
Instruments [1].

There are two important steps towards designing a control system: plant modeling and
controller design. In the case of the rotary inverted pendulum, the plant model is
described by two non-linear equations. To design a controller which could balance the
pendulum in the upright position, a linearised model of the inverted pendulum is derived
from the non-linear model. (See equation(2).)

THEORY

There are two methods for estimating the parameters of the model of the rotary inverted
pendulum described by equation (1) [2,3]. The first method does not require the user to know
the actual physical parameters: m1, l1 and L0. The parameters a, b, d, g, m and n are estimated
using the least square method. The second method needs physical parameters such as L0, l1 and
m1 to be measured. A set of values for J0, C0, J1 and C1 can be determined.



where,
J0-moment of inertia of rotating arm C0-friction coefficient of rotating arm
J1-moment of inertia of pendulum C1-friction coefficient of pendulum

 m1-mass of pendulum l1-length of pendulum Kt-torque constant
L0-length of rotating arm g1-gravitional force Kb-back emf constant
Ra-terminal resistance

Equation can be linearised and written in the state space form as shown below[2]:

and a = J0+m1L0
2 b = m1l1L1 d = J1+ m1l1

2 g = m1l1g1

u is the PWM input signal and C is the matrix that reflects the available measurements from the
inverted pendulum apparatus. In this case,

From equation(2), the correct signs for A and B matrices are as follows :

RESULTS AND OBSERVATION
I) At test amplitude of 60 (the nominal level), the experiment was conducted ten times. Three

sample sets of data are shown:

Method 1 Data1_60 Data2_60 Data3_60
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A matrix -0.9087   -0.8424   0.004
0             0          1

-2.1418   46.3336  -0.2184

-0.8224   -1.0230   0.0053
0              0            1

-3.5929   43.6578   -0.2247

-0.7447   -0.9892    0.0041
0             0             1

-3.8688  43.4358  -0.1798
B matrix 0.3776

0
0.8901

0.3501
0

1.5295

0.3376
0

1.7538
Gain, K -14.809, 945.518, 66.047 -15.763, 552.319, 38.7052 -15.979, 474.990, 33.304

Open loop
poles

   -6.8909  -0.9483   6.7056 -6.6728  -0.9082  6.5269 -6.6302 -0.8343  6.5399

Method 2
A matrix -0.4218   -0.3964   0.0027

0           0             1
0.2841   48.3204   -0.3264

-0.4333   -0.2696   0.0019
0             0           1

0.2917   48.2116   -0.3428

-0.4523    0.2607   -0.0017
0              0            1

0.3081  48.4230  -0.3234
B matrix 0.0603

0
-0.0406

0.0411
0

-0.0276

-0.0392
0

0.0267
*Gain, K -0.0849, -20.648,-1.4361 -0.1252, -30.3528, -2.1106 0.1299, 31.369, 2.1794

Open loop
poles

-0.4195   6.7889  -7.1177 -0.4317   6.7734   -7.1179 -0.4539   -7.1214   6.7996

*-The gain is scaled to a factor of 0.001

Method 1: The a31 element in A matrix and the last element in the B matrix have the wrong signs
for the ten experiments. This method gives reasonable controller gain except for the first set of data
because the gain is exceptionally large. There might be experimental error when the experiment is
being conducted. The method also gives the desired open-loop poles: a pair of conjugate poles and
the third pole on the left-half side of the plane. Fig. 2 shows that the open loop poles obtained from
the ten experiments are clustered at the same regions.

Method 2: Some of the elements of the of A and B matrices have inconsistent signs for the ten
experiments. Although this method uses J0, C0, J1 and C1 in the calculations, the inconsistent
elements are those using only J0 (moment of inertia of rotating arm).  Therefore the estimated J0

could be wrong due to calculation errors. There is no convergence in the controller gain values.
However the positions of the open-loop poles still correspond.

II) The experiment is conducted for different amplitudes of test signal at 30, 40, 60 and 85. The
four conditions are used to analyze the effects of varying test amplitude on the two methods.

Method 1 Amplitude 30 Amplitude 40 Amplitude 85
A matrix 0.2581   -1.6290    -0.0260

0         0              1
-0.5525  37.6765   0.6011

-1.554   0.3996   -0.0015
0         0           1

-9.2128  52.248  0.1988

-0.9434   -1.0152    0.0066
0         0              1

1.5205   50.6282   -0.3287
B matrix -0.0116

0
0.0248

0.3376
0

1.7538

0.4863
0

-0.7837
Open loop pole -5.8340, 0.2342, 6.4590 -7.3732,-1.4808, 7.1009 -7.2995, -0.9124, 6.9397

Method 2 Amplitude 30 Amplitude 40 Amplitude 85
A matrix 0.0068  -0.9706  -0.0055

0            0          1
-0.0028  30.3947  0.1710

-0.3812 -0.1009    0.0005
0         0         1

0.2643  49.5280  -0.2253

-0.4904   -0.5340    0.0034
0         0    1

0.3372   49.4181   -0.3125
B matrix 0.2368

0
-0.0995

0.0149
0

-0.0103

0.0796
0

-0.0548
Open loop pole 0.0067   -5.4282    5.5994 -0.3807  6.9256   -7.1514 -0.4867    6.8736   -7.1898



For method 1, the results show that at test amplitude of 85, elements of A and B matrices have the
correct signs. For all the test amplitudes, the controller gains and the open-loop poles are consistent.
This method gives the correct controller design when the closed loop poles are varied.
For method 2, the matrices are not consistent. However the positions of the open-loop poles still
correspond.
At test amplitude of 30 (barely able to rotate the arm), the model could not be estimated. As for
amplitude 40, the model cannot be estimated accurately because of friction at the arm and pendulum.

CONCLUSION
       Imaginary axis

                                                       Fig. 2: Clusters of
open

Real axis      loop poles
 

The two methods were tested extensively with more than twenty sets of data collected. Overall, both
methods gave reasonable and correct open-loop poles. On the other hand, method 1 gives a better
controller because the controller gain and open-loop poles are correct. Also, A and B matrices for
method 1 is more consistent compared to method 2.

RECOMMENDATION

The wrong signs in A and B matrices in method 1 provide an area for further research. The
experiments should be conducted as many times as possible (for a particular test amplitude) because
the arm starts rotation at different points. This might affect the values of the estimated parameters for
both methods 1 and 2. Special attention may be given to test amplitudes when the arm starts to rotate
and when the arm starts to swing violently.
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