Parameter Estimation of a Rotary Inverted Pendulum

Application Note Ref: IP-305
Date: 2 August 1999
Prepared by: Lew WJ \&
Ling KV, NTU
for KentRidge Instruments Pte Ltd

Parameter Estimation of a
 Rotary Inverted Pendulum

IMPORTANT NOTICES

KentRidge Instruments (S) Pte. Ltd. reserves the right to make changes to the information contained in this manual without notice. KentRidge Instruments Pte. Ltd. assumes no responsibility for any errors or consequential damages that may result from the use or misinterpretation of any information contained in this manual.

Acknowledgements

The Inverted Pendulum PP-300 is designed and manufactured by KentRidge Instruments Pte. Ltd. in collaboration with the Nanyang Technological University, Singapore.

This publication is reproduced by KentRidge Instruments Pte. Ltd. for distribution with permission from the authors.

Copyright 1999 KentRidge Instruments Pte Ltd
All Rights Reserved. No part of this document may be reproduced, transcribed, stored in any retrieval system, translated into any language, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without prior written permission from KentRidge Instruments Pte. Ltd.

Parameter Estimation of a Rotary Inverted Pendulum

Lew WJ \& K.V. Ling

School of Electrical Electronics Engineering
Nanyang Technological University
Nanyang Avenue, Singapore 639798

Abstract

A step up and step down test is employed to estimate the parameters of a rotary inverted pendulum. The data collected are used to fit a nonlinear model of the inverted pendulum. Two different methods of estimating the parameters of the pendulum are investigated. In addition, the effects of varying the amplitude of the test signal are investigated.

INTRODUCTION

The inverted pendulum system is widely used in control study. A rotary arm (Fig 1) version of the inverted pendulum system is used. The apparatus (Kri PP-300) is supplied by Kent Ridge Instruments [1].

There are two important steps towards designing a control system: plant modeling and controller design. In the case of the rotary inverted pendulum, the plant model is described by two non-linear equations. To design a controller which could balance the pendulum in the upright position, a linearised model of the inverted pendulum is derived from the non-linear model. (See equation(2).)

THEORY

There are two methods for estimating the parameters of the model of the rotary inverted pendulum described by equation (1) [2,3]. The first method does not require the user to know the actual physical parameters: m_{1}, l_{1} and L_{0}. The parameters a, b, d, g, m and n are estimated using the least square method. The second method needs physical parameters such as $L_{0}, 1_{1}$ and m_{1} to be measured. A set of values for $\mathrm{J}_{0}, \mathrm{C}_{0}, \mathrm{~J}_{1}$ and C_{1} can be determined.

$$
\begin{align*}
& {\left[\begin{array}{cc}
J_{0}+m_{1} L_{0}{ }^{2}+m_{1} l_{1}^{2} \sin ^{2} \beta & m_{1} l_{1} L_{0} \cos \beta \\
m_{1} l_{1} L_{0} \cos \beta & J_{1}+m_{1} l_{1}^{2}
\end{array}\right]\left[\begin{array}{c}
\ddot{\alpha} \\
\ddot{\beta}
\end{array}\right]+\left[\begin{array}{c}
0 \\
-m_{1} l_{1} g_{1} \sin \beta
\end{array}\right]} \\
& {\left[\begin{array}{cc}
C_{0}+\frac{1}{2} m_{1} l_{1}^{2} \sin \dot{\beta}(2 \beta) & -m_{1} l_{1} L_{0} \sin \beta+\frac{1}{2} m_{1 l_{1}{ }^{2} \sin \dot{\alpha}(2 \beta)} \\
-\frac{1}{2} m_{1} l_{1}^{2} \sin \dot{\alpha}(2 \beta) & C_{1}
\end{array}\right]\left[\begin{array}{l}
\dot{\alpha} \\
\dot{\beta}
\end{array}\right]=\left[\begin{array}{l}
\tau \\
0
\end{array}\right]} \tag{1}
\end{align*}
$$

where,
J_{0}-moment of inertia of rotating arm
C_{0}-friction coefficient of rotating arm
J_{1}-moment of inertia of pendulum
C_{1}-friction coefficient of pendulum
α-arm velocity
α-arm velocity
α - arm acceleration
β-pendulum position $\quad \beta$-pendulum velocity $\quad \beta$-pendulum acceleration
m_{1}-mass of pendulum l_{1}-length of pendulum
L_{0}-length of rotating arm $\quad \mathrm{g}_{1}$-gravitional force
K_{t}-torque constant
K_{b}-back emf constant
Ra-terminal resistance

Equation can be linearised and written in the state space form as shown below[2]:

$$
\begin{gathered}
\dot{x}=\mathrm{A} \mathbf{x}+\mathrm{Bu} \\
\mathrm{y}=\mathrm{C} \mathbf{x}
\end{gathered}
$$

\mathbf{u} is the PWM input signal and C is the matrix that reflects the available measurements from the inverted pendulum apparatus. In this case,

$$
C=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

From equation(2), the correct signs for A and B matrices are as follows :

$$
\mathrm{A}=\left[\begin{array}{ccc}
- & - & + \\
0 & 0 & 1 \\
+ & + & -
\end{array}\right] \quad \text { and } \quad \mathrm{B}=\left[\begin{array}{c}
+ \\
0 \\
-
\end{array}\right]
$$

RESULTS AND OBSERVATION

I) At test amplitude of 60 (the nominal level), the experiment was conducted ten times. Three sample sets of data are shown:

A matrix	$\begin{gathered} \hline-0.9087 \\ 0 \\ -2.1418 \\ \hline \end{gathered}$	-0.8424 0 46.3336	$\begin{gathered} 0.004 \\ 1 \\ -0.2184 \end{gathered}$	$\begin{gathered} \hline-0.8224 \\ 0 \\ -3.5929 \\ \hline \end{gathered}$	-1.0230 0 43.6578	$\begin{gathered} 0.0053 \\ 1 \\ -0.2247 \end{gathered}$	$\begin{gathered} \hline-0.74 \\ 0 \\ -3.86 \\ \hline \end{gathered}$		$\begin{gathered} 0.0041 \\ 1 \\ -0.1798 \end{gathered}$
B matrix	$\begin{gathered} 0.3776 \\ 0 \\ 0.8901 \end{gathered}$				0.3501 0 1.5295			$\begin{gathered} 0.3376 \\ 0 \\ 1.7538 \\ \hline \end{gathered}$	
Gain, K	-14.809, 945.518, 66.047			-15.763, 552.319, 38.7052			-15.979, 474.990, 33.304		
Open loop poles	-6.8909 -0.9483 6.7056			-6.6728 -0.9082 6.5269			-6.6302-0.8343 6.5399		

Method 2			
A matrix			
B matrix	0.0603 0 -0.0406	0.0411 0 -0.0276	
*Gain, K	-0.0849, -20.648,-1.4361	-0.1252, -30.3528, -2.1106	0.1299, 31.369, 2.1794
Open loop poles	-0.4195 6.7889 -7.1177	$\begin{array}{llll}-0.4317 & 6.7734 & -7.1179\end{array}$	-0.4539 -7.1214 6.7996

*-The gain is scaled to a factor of 0.001
Method 1: The a_{31} element in A matrix and the last element in the B matrix have the wrong signs for the ten experiments. This method gives reasonable controller gain except for the first set of data because the gain is exceptionally large. There might be experimental error when the experiment is being conducted. The method also gives the desired open-loop poles: a pair of conjugate poles and the third pole on the left-half side of the plane. Fig. 2 shows that the open loop poles obtained from the ten experiments are clustered at the same regions.

Method 2: Some of the elements of the of A and B matrices have inconsistent signs for the ten experiments. Although this method uses $\mathrm{J}_{0}, \mathrm{C}_{0}, \mathrm{~J}_{1}$ and C_{1} in the calculations, the inconsistent elements are those using only J_{0} (moment of inertia of rotating arm). Therefore the estimated J_{0} could be wrong due to calculation errors. There is no convergence in the controller gain values. However the positions of the open-loop poles still correspond.
II) The experiment is conducted for different amplitudes of test signal at 30, 40, 60 and 85 . The four conditions are used to analyze the effects of varying test amplitude on the two methods.

Method 1	Amplitude 30	Amplitude 40	Amplitude 85
A matrix	$\begin{array}{ccc} 0.2581 & -1.6290 & -0.0260 \\ 0 & 0 & 1 \\ -0.5525 & 37.6765 & 0.6011 \end{array}$	$\begin{array}{ccc} -1.554 & 0.3996 & -0.0015 \\ 0 & 0 & 1 \\ -9.2128 & 52.248 & 0.1988 \end{array}$	$\begin{array}{ccc} -0.9434 & -1.0152 & 0.0066 \\ 0 & 0 & 1 \\ 1.5205 & 50.6282 & -0.3287 \end{array}$
B matrix	-0.0116 0.0248	$\begin{gathered} 0.3376 \\ 0 \\ 1.7538 \end{gathered}$	$\begin{gathered} \hline 0.4863 \\ 0 \\ -0.7837 \\ \hline \end{gathered}$
Open loop pole	-5.8340, 0.2342, 6.4590	-7.3732,-1.4808, 7.1009	-7.2995, -0.9124, 6.9397

Method 2	Amplitude 30			Amplitude 40			Amplitude 85		
A matrix	0.0068 0 -0.0028	$\begin{gathered} -0.9706 \\ 0 \\ 30.3947 \end{gathered}$		-0.3812 0 0.2643	-0.1009 0 49.5280	$\begin{gathered} 0.0005 \\ 1 \\ -0.2253 \end{gathered}$		-0.5340 49.4181	
B matrix		0.2368 0 -0.0995			$\begin{gathered} 0.0149 \\ 0 \\ -0.0103 \end{gathered}$			0.0796 0 -0.0548	
Open loop pole	0.0067	-5.4282	5.5994	-0.3807	6.9256	-7.1514	-0.4867	6.8736	-7.1898

For method 1, the results show that at test amplitude of 85 , elements of A and B matrices have the correct signs. For all the test amplitudes, the controller gains and the open-loop poles are consistent. This method gives the correct controller design when the closed loop poles are varied.
For method 2, the matrices are not consistent. However the positions of the open-loop poles still correspond.
At test amplitude of 30 (barely able to rotate the arm), the model could not be estimated. As for amplitude 40, the model cannot be estimated accurately because of friction at the arm and pendulum.

CONCLUSION

Fig. 2: Clusters of
loop poles

The two methods were tested extensively with more than twenty sets of data collected. Overall, both methods gave reasonable and correct open-loop poles. On the other hand, method 1 gives a better controller because the controller gain and open-loop poles are correct. Also, A and B matrices for method 1 is more consistent compared to method 2.

RECOMMENDATION

The wrong signs in A and B matrices in method 1 provide an area for further research. The experiments should be conducted as many times as possible (for a particular test amplitude) because the arm starts rotation at different points. This might affect the values of the estimated parameters for both methods 1 and 2. Special attention may be given to test amplitudes when the arm starts to rotate and when the arm starts to swing violently.

ACKNOWLEDGMENTS

Way Jeen would like to thank Dr Ling for his patience, technical and non-technical guidance; Kevin Woo Wong Kin, and Teo Chun Sang for their enlightenment on theoretical issues; project partner, Leonard for his help in this paper; and the staff in the Control Lab for their technical support.

REFERENCES

[1] Application examples of the KRi Inverted pendulum PP-300,Kent Ridge Instruments Pte Ltd,1996
[2] Ang Seng Hong and Tan Meng Boon, "Swing-Up and balancing of An Inverted Pendulum", Nanyang Technological University Final Year Project 1997/98 Report.
[3] S.C. Tan, "Parameters Identification of a Rotary Inverted Pendulum", Proceedings of the $4^{\text {th }}$ National Undergraduate Research Opportunities Program Congress 1998; Volume2, pg. 784-787

